Laserinduziertes Mikroplasma in reaktiven Gasen - Ein Tool zum präzisen Ätzen von Materialien -

Klaus Zimmer, Afaque Hossain, Robert Heinke, Pierre Lorenz, Martin Ehrhardt

Leibniz Institute of Surface Engineering (IOM); Leipzig, Permoserstr. 15, Germany

klaus.zimmer@iom-leipzig.de

Outline

- Requirements of UPSM
 - lasers for UPSM
 - status of different approaches for UPSM with lasers

Towards UPSM with laser radiation

- Laser-induced plasmas (LIP) an optically pumped plasma in gas
- Impact of selected parameters
- Surface characteristics

- Summary/conclusions/future
 - summarizing conclusions
 - future developments

Ultraprecise surface machining (UPSM)

Integrity of Surface: "Inherent or enhanced condition of a surface produced by machining processes or other surface generation operations." application requirements $\leftarrow \rightarrow$ determining/measurement $\leftarrow \rightarrow$ machining process

Specific approaches for laser-based surface machining with view to UPSM

- Laser beam technology provides excellent preconditions for ultra precise surface machining (UPSM) as the tool
 - is not in mechanical contact with the surface

10 ns, λ =1064 nm

- well controllable in space and time
- enables in-process measurement and process control

10 um

•

10 µm

. . .

150 fs, λ=775 nm

but the machining

the surface quality.

mechanism determines

Fundamental/experimental limit of precision for different laser-based techniques

physical

chemical

Process	Laser	Material removal rate in average	Material
PW laser ablation	Pulse	>150 nm	
USPL ablation	Pulse	50 to 150 nm	SiO2
LIBWE	Pulse	10 to 20 nm	SiO2
LESAL	Pulse	1 to 2 nm	SiO2
LIBDE	Pulse	80nm	SiO2
LIPhotoE etching	cw, min	1 to 2µm	SiO2
laser-induced plasma dry etching	Pulse		

Characteristics of laser beams: λ , t_p , f, P_L , E_p , $2\omega_0$, v_s ...

XXVIII. Erfahrungsaustausch OTPIP Mühlleithen 2023

Introduction to LIP

Electric field discharge: Focused lasers can produce high electric fields of the order of 10⁵ V/cm.

 \rightarrow Focusing laser pulses with high intensity results in an optical breakdown

Typical optical breakdown threshold in air:

- USP laser peak power density: >10¹⁴ W/cm²
- SP laser peak power density: >10¹² W/cm²

Electricalandoptical breakdown (USP)~3 106 V/m>107 V/m

➔ different mechanism of break down?

Electron generation and ionisation

Examples of laser-induced plasmas

- Laser ablation
- Pulsed laser deposition (PLD)
- Laser shock peening (LSP)
- Laser-induced breakdown spectroscopy
- Laser plasma for inducing/guiding elecrical discharge

Laser-induced plasma etching (LIPE)

Electron generation and ionisation

Schema of the expected process of surface processing with LIP

- Laser Induced Plasma etching (LIPE)
- Ignition of a plasma in a gas by laser induced optical break down with USP laser

Characteristic laser induced plasma in gas:

- Small size plasma
- Contact free → "Contamination free"
- Atmospheric pressure plasma
- Generated and manipulated with optical methods

Generating reactive species by decomposition/excitation of the gas

Laser-induced plasma etching

Glancing angle of incidence in order to avoid direct irradiation the substrate

- Gas: CF₄/O₂; Pressure absolute: 0.3 bar to 2 bar; Temperature: RT to 500 °C
- Material: Fused Silica; Silicon

XXVIII. Erfahrungsaustausch OTPIP Mühlleithen 2023

Experimental Setup

- Using ultrashort laser pulses for ignition of the plasma
 - Pulse duration = 150 fs
 - Rep. Rate = 1 kHz
 - $E_{max} = 800 \ \mu J$
 - Wavelength = 775 nm

- Etching gas
- **CF**₄
- O₂
 CF₄/O₂
- Air
- SF₆

- Low pulse energy (but high \hat{P})
- Low thermal/mechanical effects e.g., shockwaves
- High pulse repetition rate (MHz)
- Small plasma size (spot size)

Etching of SiO₂ with laser-induced plasma ignited in a CF₄ gas mixture

Material: SiO₂; Gas: CF₄; Absolute pressure: 0.85 bar; Temperature: 450°C; Etching time: 3 min

IŐM

Dependency of etching depth on laser pulse energy

Material: SiO₂; Gas: CF₄; Absolute pressure: 0.85 bar; Temperature: 450 °C; Etching time: 3 min; Distance: 100 μ m

- Linear increase of etching depth with increasing laser pulse energy
- Threshold for etching at $\sim 250 \ \mu J$

Dependency of etching depth on the substrate temperature

Material: SiO₂, Gas: CF₄; Absolute Pressure: 0.85 bar; Etching time: 3 min, Distance: 100 μ m

 For the simplest case of heterogeneous chemical reactions at the substrate the reaction rate K is usually described by the Arrhenius equation

XXVIII. Erfahrungsaustausch OTPIP Mühlleithen 2023

14

Arrhenius equation

$$\mathbf{X} = \mathbf{A} \exp\left(-\frac{E_a}{\mathbf{R} \mathbf{T}}\right)$$

E_a Activation energy*T* Temperature*K* Production rate

K Reaction rate

$$\rightarrow E_a$$
 of 4.3 kcal/mol

Surface roughness of laser-plasma etched surface

CF4

Surface roughness 1-2 nm RMS! 15

Surface fidelity

Cross-section of laser ablated and LIP etched silicon surface

Strong (sub) surface damage is visible in the SEM. TEM confirm: melting, cracks, stress, and amorphization

IØM

TEM image of LIP etched crystalline silicon.

17

Example of optical diagnostics of LIP

Emission of a laser-induced plasma near a substrate surface

Summary/conclusion

- Laser-induced plasma as a new tool for UPSM.
 - atmospheric pressure process conditions
 - sub-mm size dimensions of the tool
 - Extreme low etching rates → pm-range
 - smooth etching enabled → nm rms
 - almost no (sub)surface damage
 - strong impact of the material to the etching (masking ...)
- Understanding of LIPE mechanism
 - LIPE mechanism
 - governing processes
 - physical-chemical model and the mathematical formulation simulation of the LIPE → good to have collaboration
- Development of applicative cases for
 - UPSM for optics, precision mechanics, etc.
 - localized plasma-based processing
- Improvements of the mechanism

Thank you for your attention! Questions?

Klaus Zimmer Leibniz Institute of Surface Engineering (IOM) Leipzig, Permoserstr. 15, Germany

klaus.zimmer@iom-leipzig.de

Further reading

- [1] M. Ehrhardt, K. Zimmer, P. Lorenz et al., Germany Patent No. B23K 26/362 (04.09.2019 2019).
- [2] M. Ehrhardt, P. Lorenz, B. Han et al., Applied Physics a-Materials Science & Processing 126 (2020) 9.
- [3] R. Heinke, M. Ehrhardt, P. Lorenz et al., Applied Surface Science Advances 6 (2021) 100169.
- [4] A. M. Hossain, M. Ehrhardt, M. Rudolph et al., J. Phys. D 55 (2021) 125204.
- [5] M. Ehrhardt, P. Lorenz, K. Zimmer, in Ultrafast Laser Nanostructuring, in The Pursuit of Extreme Scales, edited by Razvan Stoian and Jörn Bonse (Springer Cham, 2022).
- [6] R. Heinke, M. Ehrhardt, J. Bauer et al., Appl. Surf. Sci. 597 (2022) 153712.
- [7] L. Streisel, M. Ehrhardt, P. Lorenz et al., in JLMN-Journal of Laser Micro/Nanoengineering, (2022), Vol. 1.
- [8] K. Zimmer, M. Ehrhardt, P. Lorenz et al., Ceram. Int. 48 (2022) 90.
- [9] A. M. Hossain, M. Ehrhardt, M. Rudolph et al., ACS Photonics (2023).

Acknowledgement

Founding

Help and Discussions by colleagues of IOM and NJUST

DFG: Zi 660/17-1

