A Probe for direction-dependent measurement of the energy influx – diagnostic and monitoring of plasma processes

XXVIII. Erfahrungsaustausch Oberflächentechnologie mit Plasma- und Ionenstrahlprozessen

Mühlleithen, März 2023

- <u>R. Wiese</u>¹ H. Kersten² G. Wiese³ R. Bartsch⁴
- ¹Ampower Science and Engineering GmbH
- ² Christian-Abrecht-Universität Kiel
- ³ Sonotec GmbH, Halle
- ⁴ neoplas GmbH, Greifswald

History

- 2008 Patent
- 2008 Functional model
- market survey
- 2010 2011 Project E-Impact
 - Probe with bias voltage
 - Double probe (directional measurement)
- Measurements in different plasmas (Kiel, Liverpool, Leipzig)
 - Experience gained, another look at the probe
 - Comparison with other probes
- Offer from corporation Hiden
- Attempt to cooperate with Zirox
- Job at neoplas
- Feb 2022 Setting up a business

Motivation

process parameter \rightarrow energy influx \rightarrow layer properties

Measurement principle of the Active Thermal Probe

Measurement principle – parameters achieved

Measurement principle – parameters achieved

- Measurement area:
- Sensor thickness:
- Probe temperature:
- temperature constancy:
- Max. power fluctuation:
- Time resolution:
- Measuring range.

Accuracy/measurement error: 1

7 x 7 mm 0.35 mm 0 ... 400 °C (600 °C 0.03 % 0.1 mW/cm^2 0.2 - 20 s 0.001 ... 2 W/cm² in "passive mode" until 100 W/cm² $1 \,\mathrm{mW/cm^2}$

Measurement principle of the Active Thermal Probe

Ampower Science and Engineering

R. Wiese XXVIII. Erfahrungsaustausch OTPIP Mühlleithen, März 2023

Measurement principle of the Active Thermal Probe

R. Wiese XXVIII. Erfahrungsaustausch OTPIP Mühlleithen, März 2023

Sample measurements - ion source profile

 $p = 4 \cdot 10^{-2} Pa$ Working gas: Ar Beam voltage: 500 V Source distanz: 22,5 cm Source diameter: 16 cm

Sample measurement: Energy influx during coating

Sample measurement: Energy influx during coating

Measurement of the energy influx during coating is possible!

What else is new??

R. Wiese XXVIII. Erfahrungsaustausch OTPIP Mühlleithen, März 2023

Design: Probe with bias voltage

RF-discharge p = 10 PaWorking gas: Argon P = 150 W

Design: Double probe for directional measurements

Design: Double probe for directional measurements

Application: Double probe

• Determination of *dT/dx* : *spatial gradient*

Tandian, N.P., Pfender, E., PCPP 17(1997), 353.
Steffen, H., Kersten, H., Wulff, H., JVST A12(1994), 2780.
Kersten, H., Snijkers, R, Schulze, J., Kroesen, G.M.W, Deutsch, H., deHoog, F.J., APL 64(1994), 1496.
Gardon, R., RSI 24(1953), 366

• Measurement dTs/dt : *Time derivative* (passive), PTP # Thornton, J.A., JVST 11(1974),666.
Wendt, R., Ellmer, K., Wiesemann, K., JAP 82(1997), 2115.
Ekpe, S.D., Dew, S.K., JVST A22(2004), 1420.
Thomann, A.L.,Semmar, N., Dussart, R., Mathias, J., Lang,V., RSI 77(2006), 033501.
Čada, M., Bradley, J., Clarke, G., Kelly, P.J., JAP 102(2007), 063301
Kersten, H., Kroesen, G.M.W., Contrib.PlasmaPhys. 30(1990), 725.

Measurement *Tp Particle fluorescence*

Swinkels, G., Kersten, H., Kroesen, G., Deutsch, H. JAP **88**(2000), 1747. # Maurer, H., Basner, R., Kersten, H., RSI **79**(2008), 093508.

• Measurement Qin : Compensation (active), ATP

Wiese, R., Kersten, H., Galvanotechnik 99(2008), 1502.
Wiese, R., Kersten, H., Wiese, G., Bartsch, R., EPJTI 2(2015), 2.

Continuos Measurement

Suitable for process control ?

Are the values constant?

Yes

Is the reaction speed sufficient ?

Process control – reaction speed sufficient ?

after 10 – 15 s → measured value of the energy influx

→ Active Thermal Probe is suitable for process control

Summary

- Energy influx define the surface properties
- Conventional measurement methods $J_{in} = f(I_{th})$
- Measuring principle of the Active Thermal Probe
- Sample measurements
 - Ion source
 - RF-plasma
 - Magnetron

Ampower (

 $J_{in} = \Delta P$

R. Wiese XXVIII. Erfahrungsaustausch OTPIP Mühlleithen, März 2023

- Probe with bias voltage
- Double probe for directional Measurement Without any shilding !
- No calibration necessary
- Measurement during coating is possible
- Probe suitable for: academic questions, process diagnostics and process control

Ampower

Outlook

- Neue komfortable Software
- Interner AD/DA-Wandler kein Steuerteil notwendig
- Option eines im Plasma floatenden Schutzrohres
- Mechanische Optimierung der Sonde
- Miniaturisierung der Sensorfläche
- Fertigung der Doppelsonde

Acknowledgment

solutions for your operations in gases and plasmas

Bundesministerium für Wirtschaft und Technologie

Thank you for your attention !

Sample measurement: Energy influx in RF-plasma

