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Introduction

Plasma electrolytic polishing (PEP)

Advantages of Plasma Electrolytic Polishing (PEP)

v' Enables to treat complex-shaped samples

v' Usage of environmentally-friendly electrolyte (> 90% water)
v" Various surface modifications

e.g. smoothing, degreasing, deburring, and oxidizing ...



Introduction

Application of PEP S. An et al., Surf. Coat. Tech. 405 (2021) 126504 I
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« Surface roughness (R,) was reduced from 1.9 to 0.1 um
« Surface contaminants were removed after the PEP process



Mean current density (A/cm?)

Introduction

I-V characteristics of PEP
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Current density starts to decrease at the voltage regime V,—V; due to the
appearance of vapor layer around the workpiece

Material dissolution reaction is dominant rather than surface oxidation in this
regime

The stability of the gaseous layer directly influences the material removal rate
and homogeneity



Introduction

PEP: Energy transfer aspect
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Experimental detalls
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Schematic illustration of PEP experimental
setup
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3. Results and discussion

= Electrical current and workpiece temperature



Results and discussion

Electrical current and temperature measurement
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3. Results and discussion

= Evaluation of transfered power towards the substrate

10



Results and discussion

Thermal probe - Evaluation of the power transferred to the workpiece

Measured temperature
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[1] Hansen et al., Understanding the energy balance of a
surface barrier discharge for various molecular gases by a
multi-diagnostic approach, 129 (2021) 053308. 11
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Results and discussion

Evaluation of the power transferred to the workpiece
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Results and discussion

Power efficiency
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» Less energy is transferred to the workpiece when stabilized gas layer has

developed (~ 4 s in the case of d =2 cm)

» As the immersion depth increases, the proportion of the power transferred to the
workpiece decreases presumably due to more power transfer to electrolyte 13



Results and discussion

Energy efficiency
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» The fraction of energy transferred from the input electrical energy to the anodic
workpiece reduces from 39% to 21%

* |Inthe case of d = 0.5, the value is underestimated due to insufficient treatment time

« As immersion depth increases, more energy consumed to heat the surrounding
electrolyte



Results and discussion

Electrolyte temperature
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The temperature increment is higher when the immersion depth is deeper since
more electrical power is consumed with larger exposed workpiece area

The lowering of immersion depth from 2 to 1 cm causes a deceleration in the rise of

electrolyte temperature.
15
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3. Results and discussion

= Modelling of electrolyte temperature
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Results and discussion

Modelling of electrolyte temperature
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Results and discussion

Modelling of electrolyte temperature
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« The model fits well with the experimental measurement of electrolyte temperature
* Abump of the temperature at around 20 s is also observed in the modelled curve

* The temperature, gas fraction and flow velocity of the electrolyte are significantly

affected by the transport of heated electrolyte in radial direction
18



Results and discussion

Modelling of electrolyte temperature
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The temperature simulation explains that in the beginning of the process the
heated electrolyte around the workpiece flows to the cathode

Then the heated electrolyte flows back to the near-workpiece region from the
cathode 19



Summary

Electrical and thermal measurements can be correlated and reflect the
temporal evolution of the gaseous layer around the workpiece

Determining the power transferred to the substrate revealed three different
regions (LT, IT and HT)

= LT regime : dependent on the immersion depths (~ 335 W at 2 cm)
different slope was observed compared to HT, attributed to the increased

electrolyte temperature
*Extra consideration needed for the P, evaluation.

= HT regime : converging to ~ 180 W -> stable gaseous layer

Higher immersion depth

= Energy efficiency on the sample reduces down to ~ 20% due to
enhanced heating of the surrounding electrolyte

= Higher surrounding electrolyte temperature - more electrical power
consumed

Temporal evolution of the electrolyte temperature can be explained by the
flow of the heated electrolyte using the 2D time-dependent model

20
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