

Christian-Albrechts-Universität zu Kiel

XXVIII. Erfahrungsaustausch OTPIP Mühlleiten

Tuesday, March 14, 2023

Characterization of a pulsed plasma and microparticles in an industrial scale ta-C laser-arc coating system

Mathis Klette¹, Martin Kopte², Wolfgang Fukarek² and Holger Kersten¹

¹Institute of Experimental and Applied Physics, Workgroup Plasma Technology, Christian-Albrechts-University Kiel, Germany

²VTD Vakuumtechnik Dresden GmbH, Germany

Introduction Project Prometheus

sponsor: Bundesministerium für Wirtschaft und Energie (BMWi) / Federal Ministry for Economic Affairs and Energy **project executing organisation:** Forschungszentrum Jülich GmbH (PT-J.ESN2)

PROMETHEUS: Projekt zur Reibungs-Optimierung von Motoren durch Einsatz von triboaktiven Hochleistungskohlenstoffsowie Eisenbasisschichten und Schmierstoffen loose translation: Project for friction-optimization of motors by use of triboactive highperformance carbon and ironbased coatings and lubricants

VTD (Vakuumtechnik Dresden GmbH): Manufacturer of PVD-Vacuum coating systems for industrial use VTD: further development of the coating technology used to create optimized ta-C coatings

Goals

- Determine energy flux to substrate surface for generation of ta-C coatings
 - Spatially resolved profile of plasma parameters and ion distributions
- Suppressing particle generation and improving particle filtering
 - Analyze basic physics of cathode spot generation
 - Time and spatially resolved profiles of the plasma
- Enhancing deposition rates and uniformity
- Coating of nonconductive materials
 - What influences the ion energy?
 - What effect do other energy contributions (electrons, radiation...) have on ta-C coatings?

Arc discharge of the laser-arc module (LAM)

VTD Dresden

Basics Tetrahedral Amorphous Carbon (ta-C) / Diamond-like Carbon (DLC) **Film growth** Diamond-like • Collision phase ($\sim 10^{-13}$ s) J. Robertson (2002 Ion is implanted ta-C:H ta-C Higher localized pressure • Thermalization phase ($\sim 10^{-11}$ s) HC polymers: Heat distribution sp3 sputtered a-C(:H) sp² sp1 no films: J. Robertson (2002) • Relaxation Phase (~ $10^{-10} - 1$ s): glassy carbon graphitic C Orbitals stabilize / atomic bonds form **Expected ideal deposition conditions:** diamond-like graphite-like Young's modulus(GPa) sp³ fractior • $E_{\rm kin,ion} \approx 100 \, {\rm eV}$ Young's modulus fully ionized plasma with ions of a single charge state Density (gm.cm⁻³) (single or double ionized) 01 2.6 No macro particles or clusters which introduce defects 1.6 2.4 qap energy energy (eV)-2.2 Graphite • Constant substrate temperature (150 °C or lower) 0.8 Stress (GPa) gap Substrate temperatures can be • 0.4 lowered significantly by using pulsed arcs or lower ion energies 2.2 Optical Gap (eV) 0.8 ¥ 1.5 **c** 2.0 04 0.5 refractive index 1.8 Diamond Ô 0 100 200 300 400 500 200 0 400

Negri (2020)

1s

2s

Wikipedia (2021)

2p,

2p,

2p,

Characterization of a pulsed plasma and microparticles in an industrial scale ta-C laser-arc coating system

substrate temperature (°C) ---

B. Schultrich (1994)

14.03.2023 3

Ion Energy (eV)

Fallon (1993)

Institute of Experimental and Applied Physics

5

Test Parameters Which conditions are characterized?

no magnetic field

with magnetic field

Maximum cathode current		<i>I_K /</i> A		1600 (low)		2400 (high)	
Current ramp speed		$\frac{dI}{dt}$ / Aµs ⁻¹		18 (slow)		30 (fast)	
Magnetic plasma focus		B _{focus}		- (off)		A few mT (on)	
<i>I_K</i> / A	U_K / V	<u>d</u> <i>I</i> <i>dt</i> / Αμε		_s —1	<i>Q</i> / C		
1600	240		18	18		0.09	
1600	400		30		0.07		
2400	240		18		0.2	22	
2400	400		30		0.2	15	

Timescale What does the discharge look like?

Characterization of a pulsed plasma and microparticles in an industrial scale ta-C laser-arc coating system 14.03.2023 6

High-Speed Camera Observations at Cathode for 2400 A, 18 A/us with mag. focus

Laser Plasma

Arc Plasma (high exposure for particles)

Arc Plasma

Particle Fits

High-Speed Camera Macro Particles - Statistics

High-Speed Camera Particle Collisions at Substrate

particle velocity vs plasma frequency

particle splits at substrate

Echelle Spectrometer Which excited species are present?

Institute of Experimental and Applied Physics

Echelle Spectrometer Time and spatially resolved measurement

Arc at 1600 A, 18 A/ μ s magnetic focus off **mass** on

- 1. ion velocity \approx neutral velocity
- 2. ion generation stops with current reduction.
- 3. neutrals keep getting generated
- 4. magnetic field increases ionization in the center

high spee camera

carbon target cathode

Characterization of a pulsed plasma and microparticles in an industrial scale ta-C laser-arc coating system 14.03.2023 11

Institute of Experimental and Applied Physics

Echelle Spectrometer Time and spatially resolved measurements

U

carbon target cathod

2400 A, 18 A/μs 30 A/μs

- 1. Higher current leads to stronger ionization
- 2. Increasing ramp speed / discharge voltage drastically increases ionization, esp. doubly charged

Echelle Spectrometer Ratio of line intensities

- Time integrated spectra
- High ramp speeds
 - Reduce neutral line intensities
 - Increase singly and doubly charged ion line intensities
 - In extreme cases the doubly charged lines are dominant
 - Dependency is almost exponential
- Maximum current
 - Increases ionization for low ramp speeds
- Absolute densities are to be determined using an absolute calibrated UV spectrum

Langmuir Probe Measurements Overview

DC Voltage, averaging over multiple pulses, then increasing voltage Many unknowns in advance, requires cleaning current for negative voltages

2023 14

CAU

Langmuir Probe Plasma Parameters (1600 A, 18 A/s, magnetic variation)

Plasma Parameters (1600 A, ramp speed variation)

Data from Langmuir measurements

 $n_{e} \approx 0 - 2.6 \ e^{-18}$ $T_e \approx 1 - 2 \ eV$ $\Phi_{pl} \approx -5..5 V, 0 V @ n_{e,max}$ $\lambda_{De} \approx 4.6 \text{ um im Dichte}$ maximum $s_{\text{coll. less}}(200 V) \approx 2 \text{ mm}$ $s_{\text{coll. less}}(270 V) \approx 2.5 \text{ mm}$

collisional

exact numerical

0.001

T. E. Sheridan and J. Goree Physics of Fluids B: Plasma Physics 3, 2796 (1991)

0.01

M. Klette

200

sheath width d 00

40

0.0001

500,0µm

M. Klette

14.03.2023 Characterization of a pulsed plasma and microparticles in an industrial scale ta-C laser-arc coating system

19

Conclusion and Outlook

- Ionization is heavily depended on discharge ramp speed
- Magnetic fields push the plasma towards the center increasing ionization and density
- Faster projectiles than other sources, no very slow particles
- High BIAS and double Ionization should allow for coating of non conductive materials
- Langmuir measurements were done to obtain EEDFs, n_e and T_e
- RFA measurements used to determine ISDFs, n_i and T_i
- Echelle spectrometer measurements obtained spatially and time resolved charge density evolution
 - Different species are traveling at the same speed but are generated at different stages

15

- Not shown today
 - Energyflux measuerments (PTP)
 - Impulsflux measurements (force probe)^{*}
 - Spectrometer absolute calibration and density profiles
 - Cathode spot evaluation

Conclusion and Outlook

Goals and Outlook

- Suppressing particle generation and improving particle filtering
 - Analyze basic physics of cathode spot generation
- Enhancing deposition rates and uniformity
- Coating of nonconductive materials
 - What effect do other energy contributions (electrons, radiation...) have on ta-C coatings?
- Force probe measurements to determine neutral flux contributions
- PIC Simulations

22

Thank you for your attention

